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A new numerical technique is presented that has many advantages for obtaining 
solutions to a wide variety of time-dependent multidimensional fluid dynamics problems. 
The method uses a finite difference mesh with vertices that may be. moved with the fluid 
(Lagrangian), be held fixed (Eulerian), or be moved in any other prescribed manner, 
as in the Arbitrary-Lagrangian-Eulerian (ALE) technique. In addition, it employs an 
implicit formulation similar to that of the Implicit Continuous-Fluid Eulerian (ICE) 
technique, making it applicable to flows at all speeds. 

This paper describes the basic methodology, presents finite difference approximations, 
and discusses such matters as stability, accuracy, and zoning. In addition, illustrations 
are included from a number of representative calculations. 

I. INTRODUCTION 

There have been many finite difference techniques devised for the solution of 
fluid dynamic problems. As catalogued in [l], nearly all of these techniques can 
be classified as falling into one of two basic categories, depending on whether 
they are written primarily in terms of Lagrangian or Eulerian coordinates. Within 
each of these categories it is further possible to distinguish between those techniques 
applicable to high speed flows and those applicable to low speed. Further sub- 
divisions are mostly matters of individual taste, prejudice, or specialization for 
specific applications. 

In this paper a technique is presented for the solution of the Navier-Stokes 
equations that is both Lagrangian and Eulerian, and that is applicable to flows at 
all speeds. The method uses a finite difference mesh with vertices that may move 
with the fluid (Lagrangian), be held tixed (Eulerian), or be moved in any other 
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prescribed way. Because of this flexibility the method is referred to as an Arbitrary- 
Lagrangian-Eulerian (ALE) technique [2]. A scheme of this nature has previously 
been reported by Trulio [3] for compressible flow problems. This new technique, 
however, may be applied to flows at any speed, since it has an implicit formulation 
similar to that in the Implicit Continuous-Fluid Eulerian (ICE) method [4]. In 
particular, in the limit of infinite sound speed, the difference equations reduce to 
a generalization of the Marker-and-Cell (MAC) equations for the incompressible 
Navier-Stokes equations [5]. 

The advantages of the ICED-ALE method include its ability to resolve arbitrary 
confining boundaries, to have variable zoning for purposes of obtaining optimum 
resolution, to be almost Lagrangian for improved accuracy in problems where 
fully Lagrangian calculations are not possible and to operate with time steps 
many times larger than possible with explicit methods. 

The basic ICED-ALE method has been separated into three distinct parts 
called phases. This separation is described in Section II. Finite difference approxi- 
mations are discussed in Section III, for Cartesian and cylindrical coordinates. 
Also in Sections II and III is an interpretation of the ICE methodology, which 
leads to an estimate for the number of iterations necessary to solve the implicit 
difference equations. In Section IV some discussion is directed toward matters of 
stability, accuracy, choice of mesh, etc. This section is illustrated with a number 
of representative calculations. 

An attempt has been made to concisely summarize a considerable amount of 
material in this paper. However, for the reader interested in a more complete 
description of the difference equations, a flow chart, and a complete FORTRAN 
computer listing for a code based on the method described in this paper, refer- 
ence [6] is available upon request. 

II. BASIC METHODOLOGY 

The finite difference mesh used here consists of a network of quadrilateral cells 
with vertices labeled by integer pairs (i,j), denoting column i and row j. Fluid 
variables are assigned to staggered locations in the mesh as shown in Fig. 1. 
Pressures (p), specific internal energies (Z), cell volumes (V), and densities (p) or 
masses (M) are all assigned to cell centers. Coordinates (x, y) and velocity com- 
ponents (u, v) are assigned to cell vertices. 

The differential equations to be solved are, 

f$ + v . pu = 0 



NUMERICAL FLUID DYNAMICS 229 

(2) 

where E = Qu * u + I and I is the material specific internal energy. In Eqs. (2) 
and (3) g is a body acceleration (usually gravity) and p is the fluid pressure given 
by the equation of state 

P = f h 0 (4) 

For problems involving shock waves it is necessary to add to p an artificial 
viscous pressure, q. A suitable form for q that is linear in the velocity divergence is 

q = -xpv * u. (5) 

Usually q is replaced by zero in expanding cells, that is, where V * u is positive. 
In reference [6] details are given for including a complete viscous stress, but in 
this paper these complications are omitted in order to simplify the presentation of 
the essential ideas of the ICED-ALE method. 

FIG. 1. The assignment of the variables about a cell. 

The conservation statements of mass, momentum, and energy contained in 
Eqs. (l)-(3) are more convenient for our purposes when integrated over a volume V, 
which may be moving with an arbitrarily prescribed velocity. Denoting the surface 
of Vby S and the outward normal on S by n these equations are (see, for example, 
reference [7]) 

@a) 
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g j, P” dV - js P”W - “1 * u dS + 1, Vp dV - 1 pg dV = 0 (6b) 
V 

$ j, PE dV - js PEW - “1 *udS+ j pu * n dS - j pg . u dV = 0. (6~) 
s V 

In these expressions U is the velocity of the surface S. When U = 0 the equations 
are Eulerian, and when U = u the equations are Lagrangian. The pressure gradient 
term in Eq. (6b) could be written as a surface integral, but for cylindrical coordi- 
nates a simpler finite difference approximation is obtained directly from the volume 
integral and this is advantageous for the implicit formulation of the difference 
equations. 

The finite difference formulae presented in Section III are written as approxima- 
tions to these equations in which the integration volumes are the cells of a moving 
finite difference mesh. In particular, the V in Eqs. (6a) and (6~) is the volume of 
a cell in the mesh, and the V in Eq. (6b) is a volume surrounding a vertex. A typical 
cross section for the latter is indicated by the dashed line in Fig. 2. This difference 
in integration volumes is dictated by having defined fluid densities and energies 
at cell centers while velocities are defined at cell vertices. In Section III discrete 
approximations are described for all the terms in Eqs. (6a)-(6c). 

6 

6 

FIG. 2. The dashed line encloses the momentum integration volume used for vertex 4. Nota- 
tion is that used for typical vertex and cell finite difference equations appearing in the text. 

The calculations necessary to advance a solution one step in time, St, are 
separated into three distinct phases. The fist phase consists of an explicit 
Lagrangian calculation, except mesh vertices are not moved. Second, an iteration 
phase adjusts the pressure gradient forces to the advanced time level. This phase, 
which is optional, eliminates the usual Courant-like numerical stability condition 
that limits sound waves to travel no further than one cell per time step. The mesh 
vertices are moved to their new Lagrangian positions after this phase. Finally, 
in the third phase, which is also optional, the mesh can be moved to a new con- 
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figuration. In this (rezone) phase convective fluxes must be computed to account 
for the movement of fluid between cells as the mesh moves. The calculations in 
this last phase are automatically iterated if zones try to move too far in any single 
step, so that gross rezoning can be accomplished without introducing numerical 
instabilities. 

This separation of a calculational cycle into a Lagrangian phase and a convective 
flux, or rezone, phase originated in the Particle-in-Cell numerical method [8], and 
has since been used in many hydrodynamic computer codes. In the present 
technique the different phases can be combined in various ways to suit the require- 
ments of individual problems. For example, in high speed problems, in which 
the Courant stability condition is not likely to be violated, an explicit calculation 
is acceptable and the phase two iteration may be omitted, and for an explicit 
Lagrangian calculation only phase one is used. 

Phases one and three are variations of familiar Lagrangian and Eulerian finite 
difference techniques, although there are some novel features as described in 
Section III. The phase two iteration, however, is new and requires some pre- 
liminary discussion. The purpose of phase two is to get time-advanced pressure 
forces in the Lagrangian part of a calculation. The reason for this can be appre- 
ciated from the following argument. In an explicit method pressure forces can be 
transmitted only one cell each time step, that is, cells exert pressure forces only 
on neighboring cells. When the time step is chosen so large that sound waves 
should travel more than one cell the one cell limitation is clearly inaccurate and 
a catastrophic instability develops. The instability arises because the explicit 
pressure gradients lead to excessive cell compressions or expansions when multi- 
plied by too large a time step. This then leads to larger pressure gradients the 
next cycle, which try to reverse the previous excesses, but since the time step is 
too large the reversal is also too large and the process repeats itself with a rapidly 
increasing amplitude. The overresponse to pressure gradients in this fashion is 
eliminated by using time-advanced pressure gradients, for then cells cannot 
compress or expand to the point where the gradients are reversed. 

Unfortunately, the time-advanced pressures depend on the accelerations and 
velocities computed from those pressures, so an iterative solution of the equations 
is necessary. Physically, an iteration offers a means by which pressure signals can 
traverse across more than one cell in a time step. The iteration is, however, more 
efficient than a straight explicit calculation with reduced time step, because pressure 
variations are propagated only to the point where they are producing effects no 
longer considered significant, This point is discussed in more detail in Sections III 
and IV. 
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III. DISCRETE APPROXIMATIONS 

A. The Finite Deference Equations 

A set of finite difference approximations is outlined in this section for two- 
dimensional Cartesian (x, v) or cylindrical (r, z) coordinates. When Cartesian 
coordinates are desired, all radii, r, appearing in the following equations should 
be replaced by unity. When using cylindrical coordinates the equations refer to 
unit azimuthal angle, not 2~. 

Input data to start a calculation consists of mesh vertex coordinates (x, y), 
velocities (u, v), cell densities @), and internal energies (Z). 

The variables adjusted at each stage of a calculational cycle are indicated by 
the entries in Table I. For example, vertex velocities are adjusted explicitly in the 
first part of phase one, again in the implicit second phase, and finally in phase 
three, if the mesh is rezoned. In the remainder of this subsection the calculations 

TABLE I 

Variables Updated 
Cycle Steps 

x y u v pEMlp 

(1) Initializing Calculations PE M 

(2) Phase I-First Part li 6 e 
(3) Phase II-Implicit UL VL pL 
(4) Phase I-Second Part xL yL EL PL 

(5) Phase III-Rezone x%+1 y?l+’ pi1 on+1 ,pfl M”+’ P n+1 

(6) Auxiliary P n+1 p+1 

performed at each cycle, and listed as entries in Table I, are expressed for a typical 
mesh vertex, labeled 4 in Fig. 2, or for a typical cell, labeled A in Fig. 2. All for- 
mulae presented here will employ number or letter subscripts for vertex or cell 
quantities, respectively, as shown in Fig. 2. In subsection B are described the 
considerations necessary to impose a variety of boundary conditions. 

1. ZnitiaIizing Calculations 

For convenience and speed it is desirable to compute and store several auxiliary 
quantities used repeatedly in the following equations. These quantities include 
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cell volumes, cell total energies, and the masses assigned to vertices. Once estab- 
lished at the start of a calculation, the auxiliary quantities are automatically 
updated in the course of a calculation cycle. 

The volume, V, of a cell such as A in Fig. 2 is 

where ri = xi for cylindrical coordinates and r’i = 1 for plane coordinates, 
i= 1,2,3,or4. 

The mass contained in a cell can be obtained from the product of cell volume 
and density, 

MA = PAVA. 03) 

For advancing velocities it is necessary to assign a mass to each vertex. In this 
technique it is assumed that the mass in each cell is equally shared between its 
four corner vertices, so that vertex 4 in Fig. 2, for example, is given the mass 

To ensure energy conservation the total specific energy, E, is directly advanced 
in time rather than the internal energy I. The relation between them for the typical 
cell A in Fig. 2 is 

EA = Ia + @I” + ~12~ + us2 + ua2 + v12 + ~2~ + us2 + vq2). (10) 

At the beginning of a calculation, E is computed from the input values of I, U, 
and v. Thereafter, this relation is used to recover I from E for use in the equation 
of state pressure, Eq. (4). 

2. Phase One, First Part 

In this step velocities are advanced explicitly in time using pressure gradients 
and body forces computed from the currently available pressures and mesh coor- 
dinates. If viscous, elastic or other stresses are desired, they may be included at 
this stage as well (see reference [6]). The total energy of each cell is also advanced 
in time to account for the work done by the body forces and other stresses, except 
those of pressure. Pressure work terms are included only after the implicit pressure 
calculation in phase two. This delay permits time-advanced pressures to be used 
in computing the work and ensures consistency with the velocities coming out of 
phase two. 
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The difference equations used to advance the velocity components of vertex 4 
in Fig. 2 are 

tz, = u4 + 2&f, -65 {Y4bA(YI - Y3) + Pdh - Yo) 

+ P&6 - YJ + P&8 - Ydl~ + %L (114 

where the tilde over u4 on the left side signifies the temporary new value of u4 , 
and similarly 

554 = 04 + & {PAPI + r&h - Xl> + P&3 + r&6 - x3) 

+ ibAr + rdh - x6) + h4r8 + r& - &II + b, - (1 lb) 

These expressions were obtained from the integral form of the equations of 
motion, Eqs. (6). A mass of 2M4 has been assumed to lie within the integration 
volume, because it includes approximately l/2 the mass in each cell surrounding 
vertex 4, while M4 contains only l/4 of each surrounding cell mass. It would be 
possible to use the actual mass contained in the integration volume, but it is not 
necessarily true that this would produce more accurate results. For example, in 
an incompressible flow the integration volume may not be constant even though 
the individual volumes of the cells are constant, and therefore, the vertex mass 
computed before coordinates are moved would not be the same as that computed 
afterward. In any case, the prescription used here has been successfully used by 
many other investigators, see for example, reference [9]. 

For the initial time advancement of energy E, an auxiliary quantity, Q, is 
computed for each vertex. This quantity represents the work done on tluid in the 
integration volume by all stresses, except pressure. In the present case, again 
referring to Fig. 2, 

Q4 = & {q.=4% + uJ(.Y~ - YJ + h + d(x3 - xI)l(rI + rd 

+ 4&h + h)(h - YJ + tu3 + 4(x6 - x3Mr3 + r.4 
+ 4&h + wJ(vs - ~4 + (Q + C&G - x31h + r3 
+ 4du8 + udh - vd + (Q + d(xl - x&r8 + r3> 
+ w&~4 + w41* (12) 

After all the vertex Q values have been computed, the total specific energy for 
each cell is adjusted to 

EA = EA + $(QI + Q, + Qz + Q4). (13) 
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In other words, the total energy change at each vertex is assigned to each neigh- 
boring cell in proportion to the mass that each cell contributed to the vertex. 
Total energy is conserved in this process. 

3. Phase Two, Implicit 

When an explicit calculation is wanted, this step can be omitted. The object 
of phase two is to obtain new velocities that have been accelerated with time- 
advanced pressure gradients. Since the time-advanced pressures depend on the 
densities and energies obtained when vertices are moved with their new velocities, 
which in turn are functions of the new pressures, these pressures are defined 
implicitly and must be determined by iteration. The implicit problem can be 
formulated as follows: Let a superscript L denote time-advanced values and a 
superscript IZ denote values at the beginning of a cycle. The desired pressure, 
pAL, of cell A will be the solution of the equation 

PA L - f(fAL, IAL) = O, (14) 

where the new cell density and energy can be approximated in terms of their 
initial values as 

(15) 

where VA is the current volume of cell A and V* is the volume the cell would 
have if its vertices were moved according to, e.g., 

x4 * = x4” + 24, St, y4* = y4 + v4 22, etc. (16) 

It is important that V* be computed in terms of coordinates shifted with 
velocities accelerated with the new pressures through formulae like Eqs. (1 I), in 
which pn is replaced by pL. 

A solution for PAL can be obtained by applying a Newton-Raphson iteration 
to Eq. (14) considered as an implicit equation for paL through Eqs. (11, 15, 16). 
The velocities (tz, 5) obtained in the previous step are used as initial guesses for 
the iteration. The iteration proceeds by sweeping through the mesh and applying 
the following adjustments to each cell, once each sweep 

(a) Compute V* using the most updated values for (u, v); 
(b) Compute new guesses for pAL and IAL from Eqs. (15); 
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(c) Compute a pressure change, Sp, according to 

SPA = _ PAL -f(P2,ZA 
SA 

(17) 

where the most updated value is used for pAL on the right side and S, is a relaxa- 
tion factor to be described. 

(d) Adjust the current guess for cell pressure, pAL, by adding Sp, to it, and 
adjust the velocities at the corners of the cell to reflect this pressure change: 

St 
u1- % + 2M rdy2 - Y4) SP‘4 

1 

ul -+ v1 + & (r2 + r4)(x4 - x2) apA 

u2 - u2 + & r2b3 - yl) SPA 

v2 ---f u2 + & (rl + r3)(x1 - x3) SpA 

u3 -+ u3 + & r&y4 - v2) SpA 

% -+ u3 + & (r2 + r4)(x2 - x4) Sp, 

(18) 

U4 -+ u4 + & r4(yl - v31 apA 

v4 - v4 + $ (r3 + r&x3 - x3 Sp, . 
4 

The mesh is repeatedly swept and calculations (a-d) are performed once for 
each cell each sweep, until no cell exhibits a pressure change violating the inequality 

I I A- <E 
Pmax 

9 

where pm= is the actual or an estimated maximum pressure in the mesh and c is 
a suitably chosen small number. Typically, E is of order 10”. 

The relaxation number S, , used in Eq. (17) for Sp,., , must be chosen to keep 
the pressure changes in bound and progressing in the right direction, but its 
exact value is not crucial. In the ordinary Newton-Raphson procedure S, is the 
derivative of the function whose root is sought with respect to the iteration 
variable. That is, S, is the rate at which the quantity PA - f(PA , IA) changes as 
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the variable pA changes. This rate must be computed using the implicit relations 
given by Eqs. (11, 15, 16). The difference equations can be manipulated [6] to 
yield an algebraic expression for S, , but it is easier to compute the rate of change 
numerically. For this purpose a small pressure change, 6pT is chosen, which is 
usually of order l pmax . Then the velocity changes induced by this pressure change 
in a cell are used to compute the volume change and corresponding density and 
energy changes according to Eqs. (15). Finally, S, for the cell is set equal to the 
quotient of the difference between p -f@, 0, evaluated after and before the 
change in pressure, and 6pT . These S, values are computed and stored for each 
cell before the phase two iteration is started. It is unnecessary to update them 
during an iteration. 

For a given E, the number of iterations necessary to obtain convergence can be 
roughly estimated through the following argument. Assume N iterations are 
necessary for convergence. Since the iteration acts something like an explicit 
calculation, its effective time step must be St/N. In a flow with Mach number 44, 
pressure variations satisfy the approximate inequality 

Therefore, the iteration has an effective Mach number, M2 w E, and hence, 
effective sound speed, Cen, such that 

where u is a typical fluid speed. Since the Courant number for an explicit calcula- 
tion must be less than unity for stability, this suggests the iteration will be stable 
only if its effective Courant number is less than unity, 

en% 51, c 
( 1 Sx N (22) 

where 6x is a typical cell dimension. If it is assumed that the iteration has been 
designed to proceed at maximum speed, corresponding to an equality in the 
above expression, then the number of iterations necessary for convergence will be 
of order 

N% ust 1 
( 1 6x -- $I2 (23) 

According to this, the iteration number increases as either 6t increases or E 
decreases, but is independent of the actual material sound speed. Thus, once a 
tolerable level of pressure error, E, has been chosen, the implicit scheme converges 
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in a finite number of iterations, regardless of the actual material sound speed. 
It is this feature of the ICE method [4] that makes it superior to an ordinary 
explicit method whose time step must be continually reduced as the sound speed 
is increased. 

4. Phase-Two, Second Part 

The final values of uL, vL, and pL from the iteration in the previous step are 
the new Lagrangian values for the cycle. To complete the Lagrangian portion of 
a cycle, the cell energies must now be adjusted for the pressure work terms omitted 
in step 2, and vertices must be moved with the fluid to their new positions. 

The energy for cell A in Fig. 2 is changed according to 

EAL = i?, + -& A hz(rl + rz)Kul + u,)(Y~ - YJ + 64 + V&G - xl)1 

+ p2dr2 + r3Wg + u3)(y2 - ~4 + (v2 + 4(x3 - x2)1 
+ h4(r3 + r4W3 + u4)(y3 - y4) + (v3 + v4)(x4 - xd 
+ p4dr4 + rJKu4 + Uy4 - yd + (4 + vdh - -dlh (24) 

where the velocities and pressures are the final values of uL, uL, and pL. Cell-edge 
pressures are required; ps4 , for example, is the pressure along the left edge of 
cell A between vertices 3 and 4. For this boundary pressure a mass weighting 
scheme is used, 

Ps4 = 
MBPA~ + MAPB~ 

MA+ MB ’ 

and similarly for the other edges of cell A. The mass weighted average (25) was 
recommended by Fromm [IO] and has led to good results in a variety of test cases. 

Mesh vertices are moved with the fluid to their new locations, 

x4 
L’X 4- + St u4L 

Y4 L = ygn + St v*L. 
(26) 

The new velocities are used to move vertices since this makes the explicit Lagrangian 
portion of a cycle second-order accurate in time. The implicit calculation, however, 
is only first-order accurate. 

After the vertices have been moved, new densities, pL, are computed for each 
cell as the quotient of cell mass divided by the new cell volume. 

The phase one and phase two calculations contained in the previous steps 
comprise an implicit Lagrangian method that is stable for any Courant number, 
C St/&c, where C is the fluid speed of sound. When the sound speed becomes very 
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much larger than the fluid speed, this method approaches a variant of the incom- 
pressible, Lagrangian method described in reference [l I]. 

5. Phase Three, Rezone 

As is well known, Lagrangian cell methods are not adequate for describing 
flows undergoing large distortions. In the present method, the devastating effects 
of large distortions are eliminated by moving the mesh vertices with respect to 
the fluid so as to maintain a reasonable mesh structure. Whenever a vertex is 
moved relative to the fluid, however, there must be an exchange of material 
among the cells surrounding the vertex. This exchange, which can be interpreted 
as a convective flux, is expressed by the second terms in Eqs. (6). 

Either the convective flux adjustments can be performed for the entire mesh at 
one time using only values of the fluid variables coming out of the Lagrangian 
portions of the calculation to compute the new values after rezoning, or each 
vertex can be separately adjusted, with the values arising from each adjustment 
used in subsequent calculations for other vertices. The former method requires 
extra storage for quantities needed both before and after adjusting. The latter 
method requires no extra storage and has the additional advantage that individual 
vertices can be rezoned repeatedly if necessary. In fact, a simple scheme has been 
devised that automatically limits the distance a vertex can move in any one shift 
and forces as many repeats of the rezone calculations as are necessary for those 
vertices that exceed the limit. In this way the rezone calculations are always 
stable, even when a gross change in the mesh contlguration is called for. 

Both schemes have been used in connection with the ICED-ALE formulation, 
but only the latter will be described here, while the former is detailed in reference [6]. 
Several prescriptions for choosing vertex rezone velocities are described in Sec- 
tion IV-D. For purposes of this section, they are assumed given. 

Before the rezone calculations are started all vertex velocities are converted to 
momenta and all cell specific energies are converted to total energies so that the 
rezone calculations will be rigorously conservative of mass, momentum, and 
energy. 

The adjustments associated with a shift in the position of a typical vertex, say 4 
in Fig. 2, proceed as follows. First the vertex is moved to its new location, 

n+1 _ 
x4 - x*L + at u, 

n+1 
Y4 = Y4L + at v4, 

(27) 

where U, , V4 are the rezone velocities specified for the vertex. 
When vertex 4 is moved, the lines connecting it to its neighbors 1, 3, 6, and 8 

sweep out volumes containing mass and total energy that must be exchanged 
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between the adjacent cells. For example, if vertex 4 moves to the right, the grid 
line connecting 4 to 3 sweeps out of cell A and adds to cell B a volume equal to 

aff = + P, + r,w,(Y, - Y*) + V&4 - x3)1. (28) 

Associated with this volume exchange there will also be a mass and total energy 
exchange between the cells. The mass or energy per unit volume assigned to this 
volume can be computed in various ways. It is well known that use of a simple 
average of the quantities on either side of the line leads to a computational 
instability, but that a stable calculation can be obtained by weighting the average 
in favor of the value in the cell from which the quantity is subtracted. This is the 
upstream or donor cell convective flux approximation. Thus, the mass subtracted 
from cell A and added to cell B is 

where 01 is the donor cell weighting factor. When 01 = 0 the flux is centered and 
when 01 = 1 the flux is full donor cell. The best choice for 01 is discussed in Sec- 
tion IV-B. The corresponding total energy subtracted from cell A and added to 
cell B is 

Similar formulae are used for the exchanges of mass and energy between the other 
pairs of cells surrounding the vertex. 

A shift in vertex 4 is also accompanied by a momentum exchange between 
vertices 1,3,6, and 8, because 4 is a corner of the control volumes for these vertices. 
For example, when vertex 4 is moved, the surface connecting vertices 4 and 2 
sweeps out a volume, 

sFf = F or* + rz)[U,(Y, - Y*> + V&4 - a~ (31) 

The mass in this volume is (MA/V,.,) 6 Y and the u-momentum it contains is 
approximated as 

S(Mu) = ; F [(SV - a I sv I) 243 + (SV + 01 I w I) %I. (32) 
A 
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This momentum change must be subtracted from vertex 1 and added to vertex 3. 
Similar exchanges are computed for the vertex pairs (3, 6), (6, S), and (8, 1). The 
u-momentum is handled in the same way, with 0 replacing u in the above formula. 
The scalar 01 is again chosen as zero for a centered momentum flux and as unity 
for an upstream or donor cell flux. 

When these exchanges among the cells and vertices surrounding the moved 
vertex have been completed, new volumes are computed for the cells (A, B, C, 
and 0) and the mesh is ready to have any other, or even the same vertex, moved 
to a new location. 
After all vertices have been moved to the positions desired, the total cell masses 

and energies are converted back to densities and specific energies, and vertex 
momenta are converted back to velocities. 

6. Auxiliary Calculations 

New specific internal energies, I, are computed from E by subtracting the 
average cell kinetic energy according to Eq. (10). Finally, new cell pressures 
may be computed from the defining equation of state in terms of the new values 
of p and I. 

B. Boundary Conditions 

Many kinds of boundary conditions are possible. In this section are given the 
prescriptions for rigid boundaries, inflow and outflow boundaries and free bounda- 
ries. Also, rigid boundaries may be classified as free-slip or no-slip and may be 
given prescribed motions. Combinations of these conditions can be used to 
simulate a great variety of problem situations. 

In nearly all cases, the setting of boundary conditions is accomplished by 
making adjustments to the velocities of the boundary vertices. These adjustments 
must be performed before and after the phase-one calculations and after each 
iteration in phase two. 

Consider a vertex located on the top or bottom boundary of the mesh, with 
coordinates (x, , yc). Coordinates of the vertex to the left will be denoted by 
(xL , yL) and those to the right by (xR , yR). For a vertex on the left or right sides 
of the mesh, the following discussion will apply provided “below” is read for 
“left” and “above” is read for “right.” 

The simplest boundary condition to impose is for a rigid no-slip wall on which 
the fluid velocity is set equal to the prescribed wall velocity. 

A rigid free-slip boundary is more difficult to handle, since it is only the fluid 
velocity normal to the boundary that is constrained. If the normal direction to 
the boundary at vertex (xc, yJ is defined as the direction normal to the line 

581/14/3-2 
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connecting (x~ , JJJ with (xR , yR), then the correct boundary condition is achieved 
by replacing the velocity at the vertex by 

U c’ = u, sin 0 + 24, co9 9 + v, sin 6 cos 6 
(33) 

v’ - c - -u,cosB+u,cosOsin8+v,sin2~, 

where u, is the prescribed boundary velocity in the normal direction positive 
when directed to the right of the vector pointing from (xI. , JJJ to (xR , J+). The 
angle 0 is determined from 

cos e = [(XR - xL;R+-(;; - yL)2]l/2 * 

This transformation leaves the tangential fluid velocity unchanged while replacing 
the normal fluid velocity by u, . If the boundary vertices are to move, as in a 
Lagrangian calculation, then further refinement of this boundary condition will 
be needed to keep the vertices on the boundary when it is curved, since Eq. (33) 
only keeps a vertex on the local tangent to the boundary. 

Prescribed inflow and outflow boundaries are imposed by setting fluid velocities 
at the boundary vertices to the desired values. 

At a free surface the tangential and normal stresses are zero, and no special 
conditions are required in this case. However, since free surface vertices receive 
accelerations from only one side, some caution must be exercised when the tangen- 
tial accelerations vary significantly in a direction normal to the free surface. The 
one-sided calculations can then be a poor approximation, and it may be necessary 
to extrapolate the acceleration from within the fluid out to the free surface. 

Continuative outflow boundaries are always troublesome for low speed flows, 
since influences from these boundaries can be felt upstream. The goal of a con- 
tinuative boundary is to permit outflow with a minimum of upstream disturbance. 
A prescription that has worked in ALE is to set the velocities of the boundary 
vertices equal to the velocities located at vertices immediately inside the boundary. 
This replacement should be made before and after phase one, but not after each 
iteration in phase two. During phase two the continuative boundary velocities 
are permitted to adjust to whatever pressure changes occur during the iteration. 
The use of this prescription in a low speed application, however, must be carefully 
checked in each case to be sure it is not causing unwanted upstream influences. 

For phase-three rezoning of p and E, values of these quantities must be specified 
in cells outside the boundary, if flow is to take place across the boundary. 

A calculational example that illustrates the use of several kinds of boundary 
conditions is shown in Fig. 3. This figure illustrates the result of a calculation of 
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FIG. 3. Calculation simulating the pulsating flow of fluid pumped through an elastic tube. 
Plots shown are the computing grid, velocity vectors, and isobars after 275 calculational cycles, 
or at t = 2.641. 

fluid pumped periodically through an elastic tube. The bottom edge of the mesh 
is an inflow boundary with an assigned periodic inflow velocity of the form 

v = a sin2 wt, 

with a = 0.5 and w = 0.8a. The tube has unit radius and the segment computed 
is initially 5 units long. The time step was 0.01. The top of the mesh is a continua- 
tive outflow boundary, while the left edge is an axis of cylindrical symmetry (i.e., 
a rigid free-slip wall). The right edge of the mesh is a free surface, except that an 
additional force is imposed on these vertices to represent the stress that would 
be generated in an elastic confining membrane. The fluid is assumed to be incom- 
pressible with density 1.0. 

Three kinds of data are included in Fig. 3. In Fig. 3a is shown the computing 
grid after 275 calculational cycles. Bulges of successive pressure pulses are evident 
along the outer tube boundary. In Figs. 3b and 3c are corresponding velocity 
vector and pressure contour plots. A region of high pressure is located under 
each radial bulge and a low pressure under each depression. 

In this example the mesh was continuously rezoned to keep the radial grid lines 
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fixed, while the axial grid lines were adjusted to be equally spaced along each 
radial line. 

No detailed comparisons with theoretical or experimental data have been 
attempted with this problem, since it is only presented here as a qualitative 
example. Some detailed calculations illustrating the accuracy of the ICED-ALE 
technique are presented in the next section. 

IV. GENERAL REMARKS 

To make the ICED-ALE technique presented in this paper a useful tool, it is 
necessary to give consideration to such matters as computational stability, 
accuracy, prescriptions for rezoning, automatic timestep control, marker particle 
techniques, etc. These topics are discussed in the following paragraphs. 

A. Test Calculations 

A useful problem to test a compressible flow code is the shock tube, in which 
a long straight cylinder is divided into two compartments by a central diaphragm. 
On one side of the diaphragm, there is a gas, say of density p = 0.2 and internal 
energy I = 0.18, while on the other side the gas has density p = 0.1 at the same 
energy. A calculation begins by removing the diaphragm with the gases at rest. 
We assume y-law gases with y = 513. The pressure difference in the two gases 
drives a shock into the less dense gas, while a rarefaction moves into the more 
dense gas. A contact surface trails behind the shock. 

Both a Lagrangian and an Eulerian calculation have been made for this problem, 
using 60 zones of size 6z = 0.333 and time step 6t = 0.1 (nondimensional units 
are used throughout). The artificial viscosity coefficient used in both cases was 
A = 0.04. In Figs. 4a and 4b, the density and velocity profiles are shown at t = 10.0 
for each calculation in comparison with the theoretical predictions. These results 
are typical for standard finite difference calculations of similar problems. 

A more significant test of the ICED-ALE method is illustrated in Fig. 5 where 
the velocity profiles are shown for three calculations of the same problem in 
which the time step was successively 6t = 0.1, 1.333, and 3.333. In all cases the 
calculations are stable. For the largest time step only three cycles are needed to 
reach t = 10.0, and the shock has moved approximately 15 zones in this time. 

Some accuracy has been lost at the largest at, but only in exceptional cases 
would one choose a time step that allowed the shock to move five cells each cycle. 
In general, the time step should be chosen to give reasonable resolution for the 
time scales of interest. If the shock is of primary interest, a time step would be 
used in which the shock traverses no more than one cell each step. By contrast, 
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in an incompressible or very low speed flow the time step should be chosen to 
have fluid particles moving one cell every few cycles, but in this limit compression 
waves should travel across many cells each time step. 

A simple example of an incompressible fluid calculation can be obtained by 
repeating the shock tube calculation described above using gases with a very 
large sound speed and with gravity added and directed along the confining cylinder 

0.10 
0.08 
210.06 .Z 0” f 0.04 

0.02 
0.00 I 

-0.021 I I I 

0 5 IO 15 
X 

0 

FIG. 5. Comparison of shock tube velocity profiles obtained using three different time in- 
crements. The profiles obtained with St = 0.1 and 6t = 3.333 shown at t = 10.0, the profile 
obtained with St = 1.333 is at t = 10.66. 

-a0 
0 

I I I 

5 IO 15 20 
Y 

FIG. 6. Hydrostatic pressure profile after 145 iterations in tirst cycle (dots) compared with 
theoretical profile (solid line). After three cycles the calculated results lie on the solid line. 
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axis. A hydrostatic pressure should be established in the tube when its ends are 
closed, to balance the gravitational acceleration, and the fluid should remain at 
rest. This is indeed the case as can be seen in Fig. 6 where the pressure obtained 
after 14.5 iterations is plotted as a function of height, x. The equation of state was 
chosen in this case to be p = a”(p - p,,(x)) where the sound speed is a = lo5 
and p,Jx) is the initial density distribution. The time step was 6t = 0.01, the 
gravity acceleration was 3.0, and the convergence criterion was E = 10-4. 

These examples show that the ICED-ALE method is stable for arbitrary 
Courant numbers, and is accurate for both high speed and low speed problems, 
although some accuracy is lost in processes with time scales not well resolved by 
the chosen time step. 

B. Computational StabiIity 

A rigorous stability analysis cannot be performed for the ICED-ALE technique 
presented here, but good estimates can be made based on analogies with simpler 
schemes for linear equations with constant cell sizes [12]. 

When phase one is followed by phase two there is no stability restriction on the 
distance a sound wave may propagate in a time step. However, when viscous 
effects are included in the phase one calculations, as in reference [6] for example, 
there is a stability condition that limits the distance over which momentum can 
diffuse in one time step to be less than one cell width. Violation of this condition 
results in a rapidly growing and oscillating instability. A good estimate for the 
restriction on the time step, St, needed in this case is 

at < 
[ 
WP + a 

( 
1 1 )I 

-1 
-- 

P 6x2 + sy2 ' (34) 

where p and h are the first and second coefficients of viscosity and where 6x and 
Sy are the effective cell sizes defined as 

6x = $(x1 + x2 - x3 - x4), 

SY = HY2 + Y3 - Y4 - Yd 

The most important stability considerations are associated with phase three. 
It is well known that forward time and centered space differencing (01 = 0) for 
the convection in phase three is unstable. Stability can be achieved by increasing 
the magnitude of (Y. However, to prevent unnecessary numerical smoothing the 
magnitude of 01 should be kept as small as possible. An optimal choice might be 
developed along the lines of an idea by Boris [13], but this has not yet been done. 
As a rule of thumb, 01 should not be less than SV/V where 6V is either given by 
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Eq. (28) and V is the average volume of cells on either side of the mass flux 
boundary, or 6V is given by Eq. (31) and V is the volume of the cell containing 
the momentum flux boundary. 

In addition to the choice of 01 there is a more fundamental stability and accuracy 
requirement inherent in phase three. Material cannot be fluxed through more 
than one cell in one time step, because the flux approximations have been based 
on the implicit assumption of exchanges only between neighboring cells or vertices. 
Thus, the flux volume to cell volume ratio, 6 V/V, must never be allowed to exceed 
unity. Since the 6V in Eqs. (28) or (31) is proportional to St, this limitation is 
really a limitation on the time step. 

In practice only one of the forms, Eqs. (28) or (31), is needed for limiting St, 
and coupled with Eq. (34) these restrictions can be used to automatically control 
the time step in a program. In reference [6], the automatic control of St is coupled 
with the option of an automatic determination of the viscosity coefficients, h and cc, 
to optimize stability and efficiency. 

C. Coupling Alternate Mesh Vertices 

Accelerations computed at a vertex (i,j) with the difference equations presented 
in Section III are independent of the position of the vertex within the integration 
region outlined in Fig. 2. Intuitively it is expected that the most accurate results 
will be obtained when the vertex is located at the center of the integration region, 
a condition that can often be arranged with proper rezoning of the mesh. However, 
this insensitivity to the location of the central vertex is symptomatic of a common 
problem in finite difference methods in which the shortest resolvable wave lengths 
(26x) are not sufficiently damped. 

An example of the problems that may arise is contained in the velocity vector 
plot shown in Fig. 7a. The problem consists of an incompressible fluid flow 
directed from bottom to top with unit speed entering the bottom of the mesh 
and passing around a rectangular block. The computing mesh was treated as 
Eulerian with square cells throughout. Vectors are drawn from each mesh vertex. 
Rigid free-slip conditions were imposed on the boundaries of the block. The 
region of difficulty extends off the trailing edge (top) of the block where the velocity 
vectors are seen to alternate direction on adjacent vertices. 

An effective means of eliminating this undesirable feature was developed for 
an early version of the ALE method [ 141. The idea is to introduce a small restoring 
force on each vertex to keep it more in line with neighboring vertices. For vertex 4 
in Fig. 2 the restoring acceleration is 
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FIG. 7. Velocity vectors for flow around a rectangular block. These plots, taken at the same 
time in two different calculations, show the appearance before and after coupling of the alternate 
mesh vertices. 

This acceleration is treated as arising from a body force and is added to g for 
purposes of computing the work done in Eq. (12). The coefficient ant implies 
that this relaxation in the velocity field has a characteristic time of uric time steps. 
Note, however, that if an6 = 1, the technique becomes identical to a procedure 
introduced by Lax many years ago [ 151. To avoid the difficulty of that procedure 
as 6t + 0, it would be better to define uric = a;,/&, in which a& is the actual 
relaxation time, rather than the number of cycles for relaxation. 

The effect of using expression (35) can be seen in Fig. 7b, where the alternating 
velocities have been removed. This calculation, with the vertex coupler, agrees 
very well with a calculation of the same problem using the Marker-and-Cell 
method [5]. 

D. Zoning and Rezoning 

Many choices are available for the construction of suitable meshes. For example, 
a variety of options have been previously described for the calculation of fluid 
sloshing in a rectangular tank [2]. In reference [16] a simple technique is presented 
for the automatic construction of grids that follow curved boundaries, have 
increased resolution in selected regions, etc. 
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When considering a problem involving more than one material, no special 
techniques are needed if interfaces between the different materials coincide with 
mesh lines. Of course these interface lines must be moved with the fluid in 
Lagrangian fashion, which means that severe distortions of interfaces cannot be 
allowed. Unfortunately this imposes a limitation on some multimaterial applica- 
tions. 

The kind of difficulties that may be encountered are illustrated in Fig. 8. In 
this example, a heavy, incompressible fluid of nondimensional density 2 was 
above a lighter fluid of unit density. The calculational mesh initially consisted 

FIG. 8. Calculation of an interface instability flow. Arrows indicate the Lagrangian interface. 
Even with continuous rezoning of the interior vertices, severe grid distortion will soon terminate 
the calculation. 

of rectangular cells having equal masses. A unit gravitational acceleration was 
directed downwards producing an unstable situation. A half cosine velocity 
perturbation was applied to the interface at the start of the calculation. The fluid 
configuration (mesh) is shown at times 0.085 in Fig. 8a and at 0.123 in Fig. 8b. 
Arrows along the side of the mesh mark the interface intersections. The mesh on 
either side of the interface was continuously rezoned to be approximately orthogo- 
nal, but no rezoning prescription is likely to be found that will permit the calcula- 
tion to proceed significantly further than shown in Fig. 8b. Permitting slip tangen- 
tially along the interface would help, but even with this the rolling up of the 
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interface becomes progressively harder to define with the initial rectangular array 
of cells. Nevertheless, this calculation agrees remarkably well, up to the time shown 
in the last figure, with a calculation performed by Daly using a two-fluid Marker- 
and-Cell method [5]. 

E. Incompressible Flow 

For an incompressible flow it is not desirable to compute the pressure for phase 
one from the equation of state Eq. (4). If a calculation is attempted with the sound 
speed significantly larger than u/#, where u is a typical fluid speed, then small 
density variations possibly remaining after the phase-three rezoning may be 
magnified into large pressure variations when used in the equation of state for the 
start of the next cycle. These pressures can then generate velocity fluctuations that 
may be impossible to eliminate in the following phase-two iteration. The problem 
may be avoided by omitting the equation of state calculation in phase one and 
using instead the pressures remaining from the previous phase-two iteration as 
a first guess for the next cycle. In practice, of course, the iteration can be started 
with any reasonable guess for the initial pressure, but the better the first guess 
the sooner convergence is obtained. Thus, the equation of state calculation is 
omitted before phase one when Mach numbers are less than approximately @, 
but retained otherwise. 

F. Marker Particles 

In some problems it is convenient to use Lagrangian marker particles to aid 
in the visualization of complicated fluid motions. Fig. 9, for example, shows a 
sequence of marker particle configurations obtained in the course of a calculation 
of an intense explosion in the atmosphere. The left edge of the computation region 
is an axis of cylindrical symmetry. Initially particles were densely, but uniformly, 
distributed in a semicircular region about the center of the explosion. Additional 
particles with a much smaller particle density were placed in the remainder of 
the computing region. As the problem proceeded, the mesh was continuously 
enlarged to approximately double its original size, leaving a region without 
particles around the outer edges of the mesh. The particle configurations show 
the subsequent collapse of the initial hot bubble and the formation of a buoyant 
vortex ring. Although it is not evident in Fig. 9, the mesh was continuously 
rezoned to translate upward with the hot material. Many calculations of this type 
have been performed and have been shown to yield more accurate results than 
obtainable with standard Eulerian techniques [17]. 

Marker particles are moved with the local fluid velocity each time step. In 
previous particle techniques [5], the local velocity at each particle is computed 
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FIG. 9. An ICED-ALE calculation of an intense explosion in the atmosphere, showing the 
marker particle configuration at 0.5,10.0,20.0 and 30.0 sec. The expansion of the mesh is indicated 
by the growing frame, and the rise of the hot bubble through the ambient atmosphere is evident 
in the relative particle motion. 

as a linear interpolation in both x and y directions among the nearest four vertex 
velocities. In the present method, however, the usual interpolation technique is 
difficult to apply directly, because the mesh consists of arbitrary quadrilateral 
cells. With arbitrary cells it is even difficult to determine which cell a particle is 
located in. To overcome these problems, an auxiliary rectangular mesh of uniform 
zones is superimposed over the general ALE mesh. Each cycle, the auxiliary mesh 
is assigned a velocity field linearly interpolated from the general mesh. Particles 
can then be moved in the usual way [5] with respect to the auxiliary mesh. To 
interpolate from the ALE to the rectangular mesh, a sweep is made through the 
vertices of the ALE mesh. For each vertex, its location in the rectangular mesh is 
determined and then its momentum and mass are distributed linearly to the four 
nearest rectangular mesh vertices. When all ALE vertices have been swept, the 
total momentum accumulated at each rectangular vertex is divided by the total 
mass accumulated there, resulting in a velocity field that can be used to move the 
particles. Boundary conditions must be set in the auxiliary mesh as appropriate. 
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